
Using	Nutch	in	Baa	(Alecso	Open	
Source	Search	Engine)		

	النويصري	عبدالسلام.	د:	إعداد

contents	

•  Nutch	the	crawler	
•  Workflow	
•  Focused	Crawling	with	Nutch	
•  Rooms	for	research	
•  Requirements	
•  Time	frame		
	

“	an	extensible	and	schalable	web	crawler	based	
on	Hadoop”	
•  Runs	on	top	of	Hadoop	
•  Customizable	
– Pluggable	protocols		
– URL	filter	
– Parsing		TIKA	
–  -Indexing	back	end	

•  Mostly	used	to	feed	search	engines	

	

Nutch	Workflow	

Nutch	Workflow	

Typical	workflow	is	a	sequence	of	batch	
operaUons	
●	Inject:	Populate	crawlDB	from	seed	list	
●	Generate:	Selects	URLs	to	fetch	
●	Fetch:	Fetched	URLs	from	fetchlist	
●	Parse:	Parse	content	from	fetched	URLs	
●	UpdateDB:	Update	the	crawlDB		
●	InvertLinks:	Builds	the	linkDB	
●	Index:	OpUonal	step	to	index	in	SOLR,	ElasUcsearch,	etc	

Broad vs. Focused
Crawling

● Broad Crawling :
○ Unlimited crawl frontier
○ Limited by bandwidth and politeness factors
○ Useful for creating an index of the open web
○ Can achieve high recall
○ Not useful for domain discovery as crawled content may include

a lot of irrelevant material
● Focused Crawling :

○ Limit crawl frontier by calculating relevance of URL
○ Low resource consumption as compared to the above
○ Can achieve high precision
○ Useful for domain discovery as it prioritizes based on content

relevance

Domain Discovery
A “Domain”, here, is defined as an area of interest for a user.

Domain Discovery is the act of exploring a domain of which a
user has limited prior knowledge.

Domain discovery process may include :
● Using a focused crawler
● User providing some prior knowledge in the form of text,

questions or reference websites

Focused Crawling with
Nutch

Previously available tools :
● URL filter plugins

○ Filter based on regular expressions
○ Whitelist/blacklist hosts

● Filter based on content mimetype
● Scoring links (OPIC scoring)
● Breadth first or Depth first crawl

Limitations :
● Follows the link structure
● Does not capture content relevance to a domain

Focused Crawling with
Nutch

To capture content relevance to a domain, two new tools have
been introduced.

● Cosine Similarity scoring filter
● Naive Bayes parse filter

Nutch JIRA issues :
https://issues.apache.org/jira/browse/NUTCH-2039
https://issues.apache.org/jira/browse/NUTCH-2038

Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of an
inner product space that measures the cosine of the angle between
them [1].

Similarity = cos(ᶊ) = A . B / |A| . |B|, where A and B are the vectors.

Lesser the angle => higher the similarity

[1] https://en.wikipedia.org/wiki/Cosine_similarity

Cosine Similarity
Scoring in Nutch

● Implemented as a Scoring filter
● Computed by measuring the angle between two Document

Vectors.

Document Vector :
A term frequency vector containing all the terms occurring on a

fetched page.

DV = {“robots”:51, “autonomous” : 12, “artificial” : 23, …. }

Cosine Similarity
Scoring - Architecture

Cosine Similarity
Scoring - Working

Features of the similarity scoring plugin :
● Scores a page based on content

relevance
● Leverages a simplistic bag-of-words

approach
● Outlinks from relevant parent pages

are considered relevant

Seed

Iteration 1
Seed

● Start with an initial seed
● Seed is considered to be relevant
● User provides keyword list for

cosine similarity

All children given same priority as
parent in the crawl frontier

Unfetched (in the crawl frontier)

Fetched

Policy : Fetch top 4 urls in frontier

Decreasing order of relevance

Iteration 2
Seed● Children are fetched by the crawler

● Similarity against the goldstandard
is computed and scores are
assigned.

Unfetched (in the crawl frontier)

Fetched

Policy : Fetch top 4 urls in frontier

Decreasing order of relevance

Iteration 3
SeedUnfetched (in the crawl frontier)

Fetched

Policy : Fetch top 4 urls in frontier

Decreasing order of relevance

Iteration 4
SeedUnfetched (in the crawl frontier)

Fetched

Policy : Fetch top 4 urls in frontier

Decreasing order of relevance

Iteration 5
SeedUnfetched (in the crawl frontier)

Fetched

Policy : Fetch top 4 urls in frontier

Decreasing order of relevance

Naive Bayes Classifier
Naive Bayes classifiers are a family of simple probabilistic
classifiers based on applying Bayes' theorem with strong (naive)
independence assumptions between the features [1].

[1] https://en.wikipedia.org/wiki/Naive_Bayes_classifier

Naive Bayes in Nutch
● Implemented as a parse filter
● Classifies a fetched page relevant or irrelevant based on a

user provided training dataset

Naive Bayes Classifier
Working

● User provides a set of labeled
examples as training data

● Create a model based on given
training data

● Classify each page as relevant
(positive) or irrelevant(negative)

Naive Bayes Classifier
Working

Seed

Crawl Scenario

Features:
● All outlinks from an irrelevant

(negative) page are discarded
● All outlinks from a relevant

(positive) page are followed

Rooms	for	research	

•  Check	how	to	focus	crawling	on	Arabic	
•  Check	parsing	different	documents	using	Tika.	
Check	for	rooms	of	improvement	to	Arabic	

•  Explore	current	duplicaUon	detecUon	
techniques	for	Arabic	text	and	suggest	
improvements.		

Requirements	

•  To	be	able	to	carry	research	on	crawling	
Arabic	text,	we	need	
– Nutch	installed	on	a	dedicated	server,	preferably	
integrated	with	Solr		

– Access	to	the	Internet	with	unlimited	bandwidth	

– One	research	assistant	with	the	following	skills:	
•  Java	programmer	
•  Shell	scripUng		

	

Time	frame		

•  Installing	Nutch	and	starUng	crawling,		
–  Two	weeks,	depends	on	the	server	availability	

•  Checking	current	focused	crawling	and	looking	
for	rooms	of	improvement	

•  6	months	

•  Reviewing	current	Arabic	documents	parsing	
•  6	months	

•  Checking	the	effecUveness	of	current	duplicaUon	
detecUon	techniques	for	Arabic	

•  6	months	

