Using Nutch in Baa (Alecso Open
Source Search Engine)

contents

Nutch the crawler

Workflow

~ocused Crawling with Nutch
Rooms for research

Requirements
Time frame

“an extensible and schalable web crawler based
on Hadoop”

* Runs on top of Hadoop

e Customizable
— Pluggable protocols
— URL filter
— Parsing TIKA
— -Indexing back end

* Mostly used to feed search engines

Nutch Workflow

segment n

segment 2

segment 1

)'(fetch list &
e

inject fetch
conens|
CrawlDb

dedup

parsed data

-

LinkDb .

Nutch Workflow

Typical workflow is a sequence of batch
operations

® Inject: Populate crawlDB from seed list

® Generate: Selects URLs to fetch

® Fetch: Fetched URLs from fetchlist

® Parse: Parse content from fetched URLs

e UpdateDB: Update the crawl|DB

® InvertLinks: Builds the linkDB

® Index: Optional step to index in SOLR, Elasticsearch, etc

% Broad vs. Focused
Crawling

e Broad Crawling:

©)

O O O O

Unlimited crawl frontier

Limited by bandwidth and politeness factors

Useful for creating an index of the open web

Can achieve high recall

Not useful for domain discovery as crawled content may include
a lot of irrelevant material

e Focused Crawling:

O

©)
©)
@)

Limit crawl frontier by calculating relevance of URL

Low resource consumption as compared to the above

Can achieve high precision

Useful for domain discovery as it prioritizes based on content
relevance

% Domain Discovery

A “Domain”, here, is defined as an area of interest for a user.

Domain Discovery is the act of exploring a domain of which a
user has limited prior knowledge.

Domain discovery process may include :
e Using afocused crawler

e User providing some prior knowledge in the form of text,
questions or reference websites

% Focused Crawling with
Nutch

Previously available tools :

e URL filter plugins
o Filter based on regular expressions
o Whitelist/blacklist hosts

e Filter based on content mimetype

e Scoring links (OPIC scoring)

e Breadth first or Depth first crawl

Limitations:
e Follows the link structure
e Does not capture content relevance to a domain

% Focused Crawling with
Nutch

To capture content relevance to a domain, two new tools have
been introduced.

e Cosine Similarity scoring filter
e Naive Bayes parse filter

Nutch JIRA issues:
https://issues.apache.org/jira/browse/NUTCH-2039
https://issues.apache.org/jira/browse/NUTCH-2038

% Cosine Similarity

Cosine similarity is a measure of similarity between two vectors of an
inner product space that measures the cosine of the angle between
them [1].

Similarity = cos(6) =A.B/|A|. |B|, where A and B are the vectors.

Lesser the angle => higher the similarity

[1] https://en.wikipedia.org/wiki/Cosine_similarity

% Cosine Similarity
Scoring 1n Nutch

e Implemented as a Scoring filter
e Computed by measuring the angle between two Document
Vectors.

Document Vector :
A term frequency vector containing all the terms occurring on a
fetched page.

DV ={“robots”:51, “autonomous” : 12, “artificial” : 23, }

% Cosine Similarity
Scoring - Architecture

- Fetched
Pages
Y

Creation of DocumentVectors

Lowercasing
Goldstandard al
File
Stopword removal
Goldstandard
Lucene Tokenization using kg D:’I‘:ét’g?m

Classic Tokenizer

Porter Stemming
v
i Scores for
2, Al pages

. similarity = —

\/24\/2 2

% Cosine Similarity
Scoring - Working

Features of the similarity scoring plugin : Seed
e Scores a page based on content
relevance
e Leverages asimplistic bag-of-words
approach
e Outlinks from relevant parent pages
are considered relevant

% [teration 1

e Start with aninitial seed

.) Seed
® Seedisconsidered to be relevant Q
e User provides keyword list for

cosine similarity Qx’ @ \AQ

All children given same priority as

parent in the crawl frontier
Policy : Fetch top 4 urls in frontier

----- » Unfetched (in the crawl frontier)

—» Fetched

'O' Decreasing order of relevance

?% [teration 2

e Children are fetched by the crawler
e Similarity against the goldstandard
is computed and scores are

assigned.
@0 00 x

Seed

Policy : Fetch top 4 urls in frontier

————— » Unfetched (in the crawl frontier)

—» Fetched

'O' Decreasing order of relevance

[teration 3

Policy : Fetch top 4 urls in frontier

————— » Unfetched (in the crawl frontier) Seed

—» Fetched

“‘ Decreasing order of relevance

x

TXXX

[teration 4

Policy : Fetch top 4 urls in frontier

————— » Unfetched (in the crawl frontier) Seed

—» Fetched

“‘ Decreasing order of relevance

©e®

®*e

[teration 5

Policy : Fetch top 4 urls in frontier

————— » Unfetched (in the crawl frontier) Seed

—» Fetched

“‘ Decreasing order of relevance

4 Naive Bayes Classifier

Naive Bayes classifiers are a family of simple probabilistic
classifiers based on applying Bayes' theorem with strong (naive)
independence assumptions between the features [1].

Naive Bayes in Nutch

e Implemented as a parse filter
e C(lassifies a fetched page relevant or irrelevant based on a
user provided training dataset

[1] https://en.wikipedia.org/wiki/Naive_Bayes_classifier

% Naive Bayes Classifier
Working

e User provides a set of labeled
examples as training data

e Create a model based on given
training data

e Classify each page as relevant Page
(positive) or irrelevant(negative)

S Model for the ;
Training Data ——> SIaseiar ——> Classifier

% Naive Bayes Classifier

Working

Features:

e All outlinks from an irrelevant
(negative) page are discarded

e Alloutlinks from a relevant
(positive) page are followed

Seed

Crawl Scenario

Rooms for research

* Check how to focus crawling on Arabic

* Check parsing different documents using Tika.
Check for rooms of improvement to Arabic

* Explore current duplication detection
techniques for Arabic text and suggest
Improvements.

Requirements

* To be able to carry research on crawling
Arabic text, we need

— Nutch installed on a dedicated server, preferably
integrated with Solr

— Access to the Internet with unlimited bandwidth

— One research assistant with the following skills:
* Java programmer
e Shell scripting

Time frame

Installing Nutch and starting crawling,
— Two weeks, depends on the server availability

Checking current focused crawling and looking
for rooms of improvement
* 6 months

Reviewing current Arabic documents parsing
* 6 months

Checking the effectiveness of current duplication

detection techniques for Arabic
* 6 months

